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Losslessly sampling a band-limited narrow-band process at an average raie cqual to the
Nvquist rate may require a nommiform sampling strategy. One such strategy is phase
quadrature sampling, in which a process of bandwidiht B is sampled at rate B in cach of
two channels where the two channels are n/2 out of phase at frequency B. Phase
quadrature sampling is a special case of syncopated sampling, where the phase between
channels is fixed but arbitrarv, A simple method for recovering the spectrum of the input
process from syncopated samples is derived. The derivation indicates what values of phase

between channels result in lossless sampling.

I. Introduction

Band-limited narrow-band processes can be losslessly sam-
pled at rates which correspond to the Nyquist rate for the
passband widih rather than a rate of twice the highest fre-
quency present. This is accomplished by sampling at periodic
but nonuniform intervals (Refs, 1, 2 and 3). Time domain
interpolation formulas are known for recovering the original
process from such samples (Refs. | and 2). The general ap-
proach is based upon syncopated sampling, where a process of
bandwidth B is sampled in two channels at a uniform rate 8 in
cach channel and a phase offset 0 between channels. With
phase quadrature sampling, 0 is equal to #/2, or one-fourth, of
a sample interval. A simple method for recovering the spec-
trum from two channels of samples is derived.

The current motivation for studying syncopated sampling is
the Wide Band Data Acquisition System (WBDAS), which is
used to colleet data for Very Long Bascline Interferometry

(VLBI) clock synchronization measurements (Ref’, 3). The sig:
nal entering WBDAS from a station recciver is centered at 50
Mtz and has been bandpass filtered so that most of its encrgy
is in the range from 25 to 75 MHz. The WBDAS samples,
quantizes, and records this signal.

In the WBDAS, phase quadrature sampling is employved.
What this does to the signal is similar to what is done by single
sideband demodulation, but without the side etfect of signal
group delay from an analog demodulator. The narrow-band
signal s(r) going into the sampler can be expressed in terms of
cosine and sine components, x(r) and y(r), relative to the
W, = 21 (50 MI1z) center frequency:

s(r) = x(£) cos (w, 1) + v(r) sin (w1 n

Both x(r) and »(r) are baseband processes of bandwidih
38 Mlz. The in-phase channel samples are taken at times #7’
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and the quadrature phase channel samples are taken at times
(n + 1/4)T where n is an integer and 7 is 20 nsec. The in-phase
channel samples are:

s(nT) = x(nT)+ 1 +y(N)+ 0
=x(nT)

&)

and the quadrature channel samples are:

s [(n+%) T] =X [(n+-‘!‘-)T]' 0+y[(n+%) T] -1
=y [(n +‘l‘—) T] (3;)

The two channels contain uniform samples at the Nyquist rate
for x(r) and x(r), respectively, The quadrature sampling
scheme can thus be intuitively viewed as a combination of
demodulation and uniform sampling.

Uniformly sampling s(r) at a rate equal to the average rate
of the phase quadrature scheme will result in the loss of
information. Sampling at times n7, where T is 10 nsec, gives
the following result from Eq. (1):

s(nD) = x(nD)(-1)" OR

The result is that while x(f) has been sampled at a rate of 100
MUz or twice the Nyquist rate for a 25 MlIz baseband signal,
»(¢) has been completely lost.

Il. Recovering the Spectrum

The spectrum of a band-limited narrow-band process of
bandwidth & will be recovered from two channels of uniform
samples taken at rate B where the two channels are offset by a
phase 0. Being able to recover the spectrum indicates that the
sampling is lossless as the process can be recovered by taking
the inverse Fourier transform of its spectrum, This syncopated
sampling scheme gives us the spectrum for any center fre-
quency of the narrow-band process. One restriction is that
given the center frequency, these are values of 0 for which the
method breaks down; these values are specified here.

The input signal x(r) is sampled by two impulse trains s, (r)
and s,(r) where:

0= Y, Ts@-mD (5

LR
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s, ()= D T[t-(nT+T,)] ()

MNE=.

T = sampling interval for both channels

T, = time offset between the two channels

The resulting sanpled signals on the two sampling channels
are:

.\‘I(I) = SI(I).\‘(!) (7
and

XN = s, ()X (2

Next, the effect of sampling in the frequency domain s
considered. Fourier transform pairs are denoted as follows,
using capitals in the frequency domain:

X)) = x()
,\'l([) ».\"(r)
X () =x ()

The sampling functions can be written in the time domain as i
sum of exponentials:

S.(f) = Z (,ZRIMI/T (‘)) .
ms=-ee
S:({) = Z c-imoc:triml/T o
ms-ee

where 0 = 2n7‘0/T

The frequency translation theorem X/ + f,) = x(r)e* "Ho?
results in:

xn= Y x (f+'—'r') an
ms-oe
xn= c"'"'o.\'(/'#'r—') SaD
mz-

The purpose of this discussion is to describe circumstances
under which X (/) can be recovered from X, () and X.(N).
Suppose x(¢) is band-limited to the range fu </ < + 1/Tand



=T~ fo <f<-fg. Then for fo <f <fy + 1/T, Eqs. (11) and
(12) reduce to:

Y 0= X0+ x (r+5) a3
X, = X(N)+ei0 ¥ (f+’—’T1) (14)
whre /7t in an integer function of f satisfying:
' ”~
ST HF< Ty (1)
1t then follows that:
X)X !
X = T for fy <Sf<[o*7F
(16)

PR . 1
i) X(N = X*(-1) for f, "‘i<f<'fg
(iii) A() = 0 elsewhere
where * denotes complex conjugation. Property (ii) is a con-

sequence of (1) being real valued.

Il. Examples

In this scction, the method for computing X(f) is applied to
specific cases. First X () and X, () are expressed in terms of
the samples:

X, =[ x e

an
=T Z N(mT) e 3rime
MEET )
.\':U') =j .\‘:(l)t":"’ﬂ dt
(18)

= T /o7 E X(mT+T e " mifmT

ny=—

A. Uniform Sampling

The first case is uniform sampling on one channel of a
baseband signal of bandwidth 1/T. The sampling rate is AT,

the Nyquist rate. This system can be expressed as two channels
of sampling run at rate 1/T. offset in time by 772, Equartion
(16) reducges to

AU) =—'; RVARP WAL (M
which by Eq. (17) and (18) results in ‘
has e
X() = ; 2 .\'(n—r‘), emimirmy (20

nE-oce
which, in fact. corresponds to uniform sampling at rate 2T on
one channel,

B. Quadrature Phase Sampling

The second special case is quadrature phase sampling. Here,
the sampling period on cach ol two channels is 7. and the
sampling times on the two channels are oftset by 774, This
type of sampling is applicable to narrow-band signals of’ band-
width 1/T centered about frequency 1/T (or some integer
multiple of 1/7). Considering the signal to be centered about

YT

. T T AT & T
fem o 3<s<y Lty
T
= -9 s V. 0
m 2 0= 2s T 3

which by Eq. (16) results in
XU = v e X0l N

Employing Eqs. (17) and (18) to express .\, (/) and Y (/) in
terms of the samples gives:

X)) = —g: {i x(mhye njfmT

55 )] e o]

<f<%r (2N

For the channel oftset T, differing from 774, one can still
formulate (/) in terms of X[(/) and Xy() by way of Eq.
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(16). The quantity 0 will differ from #/2 and the formula will
be more complicated than Eq. (21). When the sample offset is
T,=T/2, then 0=n and Eq. (16) becomes singular as
1 - ¢/"0 becomes zero. Since this corresponds to uniform
sampling on one channel, uniform sampling will not work for
this passband at the average sample rate used for quadrature
phase or syncopated sampling schemes near quadrature phase.

Finally, taking the inverse Fourier transform of Eq. (22
gives the sample reconstruction formula for quadrature phase
sampling:

n
- sin{= (1 -mT) -
x(r) = Z x(mT) ———1;(-1-———-—)— cos 1%’
~- T (r-mT)

l4 )l
+ 3 x {m +I Sinl—f[t- (,"+T)7]‘ , o xar
.Z..: ( T 4) _1%[’_ ("”Tl;') T] T

This formula has been obtained before by working directly in
the time domain (see Ref. 2).
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